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A Generalized Linear Transport
Model for Spatially Correlated
Stochastic Media

Anthony B. Davis and Feng Xu
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California,
USA

We formulate a new model for transport in stochastic media with long-range spatial
correlations where exponential attenuation (controlling the propagation part of the
transport) becomes power law. Direct transmission over optical distance τ (s), for fixed
physical distance s, thus becomes (1 + τ (s)/a)−a, with standard exponential decay re-
covered when a → ∞. Atmospheric turbulence phenomenology for fluctuating optical
properties rationalizes this switch. Foundational equations for this generalized trans-
port model are stated in integral form for d = 1, 2, 3 spatial dimensions. A deterministic
numerical solution is developed in d = 1 using Markov Chain formalism, verified with
Monte Carlo, and used to investigate internal radiation fields. Standard two-stream
theory, where diffusion is exact, is recovered when a = ∞. Differential diffusion equa-
tions are not presently known when a < ∞, nor is the integro-differential form of the
generalized transport equation. Monte Carlo simulations are performed in d = 2, as
a model for transport on random surfaces, to explore scaling behavior of transmit-
tance T when transport optical thickness τt � 1. Random walk theory correctly predicts
T ∝ τ

− min{1,a/2}
t in the absence of absorption. Finally, single scattering theory in d = 3

highlights the model’s violation of angular reciprocity when a < ∞, a desirable prop-
erty at least in atmospheric applications. This violation is traced back to a key trait of
generalized transport theory, namely, that we must distinguish more carefully between
two kinds of propagation: one that ends in a virtual or actual detection and the other in
a transition from one position to another in the medium.

Keywords linear transport theory; radiative transfer; stochastic optical media; turbu-
lence; clouds; multiple scattering; Markov chain formalism; Monte Carlo; propagation
kernel; angular reciprocity; non-exponential extinction laws
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A Generalized Linear Transport Model 475

1. INTRODUCTION: MOTIVATION AND OUTLINE

All natural optical media are to some extent variable in space, often in such
a complex way that they are best represented with statistics. In nuclear engi-
neering, there is increasing interest in pebble-bed reactors where the core is
made of many small spheres that contain both fuel and moderator material. In
contrast with classic reactor designs, their detailed 3D geometry (i.e., how the
spheres stack) is quite random. Earth’s cloudy atmosphere is another instance
of a very clumpy 3D optical medium. These are just two examples from vastly
different disciplines where a good theory for stochastic transport would be a
valuable asset.

Broadly speaking, three models have been proposed to account for unre-
solved spatial variability in a transport medium:

• The most natural approach is “homogenization” where one seeks effective
material properties that can be used in the solution of a transport prob-
lem for a uniform medium, but would make an accurate prediction of the
behavior of the heterogeneous stochastic medium. The homogenized ma-
terial properties will depend on statistical quantities (means, variances,
correlations, etc.) that characterize the stochastic medium of interest. Ex-
amples for the cloudy atmosphere are in Davis and colleagues (1990), Ca-
halan (1994), and Cairns, Lacis, and Carlson (2000).

• An alternative is to develop new transport equations to solve either analyti-
cally or numerically. Examples for the cloudy atmosphere are in Avaste and
Vainikko (1973), Stephens (1988), and Davis (2006). Interestingly, an early
paper by Avaste and Vyanikko (1973) proposed a binary mixture model
that has a long and ongoing history of application to nuclear engineering,
going at least back to the seminal papers by Levermore and colleagues
(Levermore et al., 1986; Levermore, Wong, and Pomraning, 1988). This ap-
proach is at least conceptually more difficult than the previous one since
new methods must be found to solve the new transport equations.

• A third approach, of intermediate complexity, is to linearly combine the
answers of a number of computations for uniform media in order to ap-
proximate the answer for the spatially heterogeneous stochastic medium.
Examples of application to the cloudy atmosphere are in Mullamaa and col-
leagues (1975), Ronnholm, Baker, and Harrison (1980), Stephens, Gabriel,
and Tsay (1991), Cahalan and associates (1994), Barker (1996), and Barker
and colleagues (2008).

In our experience, homogenization will work well for weaker kinds of vari-
ability and/or higher tolerance for error. A model derived using the second
approach, such as the one proposed in the following pages, should be more
broadly applicable. Models of the third kind can be competitive, largely due to
their straightforward implementation.
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476 A. B. Davis and F. Xu

In the following, we will primarily keep clouds and atmospheric optics in
mind, but the generalized transport model we propose may prove to be more
broadly applicable. Accordingly, we will talk about radiative transfer (RT) and
RT equations (RTEs), but the entirety of this work can be thought of as trans-
port theory as defined by the linear Boltzmann equation.

1.1. Outline
The remainder of this article is organized as follows. Section 2 intro-

duces our notations and states the standard RTE and boundary conditions
for homogeneous—or random but “homogenized”—plane-parallel media in d
spatial dimensions (d = 1, 2, 3). Section 3 introduces our ansatz leading to a
new class of generalized RTEs in integral form with power-law transmission
laws. Therein, we first see how nonexponential transmission laws arise from
the statistics of stochastic media, with an emphasis on the role of spatial corre-
lations, as exemplified by the Earth’s turbulent and cloudy atmosphere. In Sec-
tion 4, the d = 1 case gets special attention. In the framework of standard RT,
it is formally identical to the well-known two-stream model. Turning to gener-
alized RT, we derive ab initio a deterministic numerical solution in d = 1, and
use it to investigate internal radiation fields. The new generalized RT solver is
based on Markov chain formalism, traditionally a tool for random walk theory
(including its application to Monte Carlo methods in transport). A technical
Appendix details the computational methodology used in the Markov chain
code. Section 5 revisits the behavior of diffuse transmission in the absence of
absorption for standard and generalized RT in the diffusion limit (i.e., asymp-
totically large transport optical depth). New numerical experiments in d = 2
validate the theoretical prediction based on self-similar Lévy flights. This re-
duced dimensionality is easier to comprehend graphically, and also may have
applications in transport phenomena on random surfaces. In Section 6, we use
the single scattering limit in d = 3 to show that generalized RT is not recip-
rocal under a switch of sources and detectors. This violation of angular reci-
procity is in fact observed in the Earth’s cloudy atmosphere—the original mo-
tivation and application of the generalized RT model. In Section 7, we present
our conclusions and an outlook on practical applications of our theoretical and
computational advances, including a connection with recent work atmospheric
spectroscopy (Conley and Collins, 2011).

2. STANDARD RADIATIVE TRANSPORT IN d SPATIAL DIMENSIONS

2.1. RTE for Homogeneous—or Homogenized—Media
in Integro-Differential Form
Let I(z,�) denote the steady-state radiance field at level z in a uniform

d-dimensional plane-parallel optical medium of thickness H,

Md(H) = {x ∈ R
d, 0 < z < H}, (1)
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A Generalized Linear Transport Model 477

Table 1: Definitions for d = 1, 2, 3

d 1 2 3

x z (x, z)T (x, y, z)T

dx dz dxdz dxdydz
� ±1 (sin θ, cos θ)T (sin θ cos φ, sin θ sin φ, cos θ)T

d� n/a† dθ d cos θdφ
cd in (7), (10), (15), (27) 1 2 π

[F0] in (6), (10)–(15) W W/m W/m2

[I] W W/m/rad W/m2/sr
[S] = [q] W/m W/m2/rad W/m3/sr
pd,iso = p 0(μs) 1/2 [-] 1/2π [rad−1] 1/4π [sr−1]
pg(μs)

1+g μs
2

(
1

2π

) 1−g2

1+g2−2g μs

(
1

4π

) 1−g2

(1+g2−2g μs)3/2 (Henyey
and Greenstein, 1941)

χd in Section 5.1 1 π/4 2/3

†In d = 1, angular integrals become sums over the up (μ = −1) and down (μ = +1) directions,
or only downward in (7).
N.B. In all cases, we use μs = cos θs to denote � · �′, the scalar product of the “before” and
“after” scattering direction vectors.

propagating in direction � on the d-dimensional sphere,

�d = {� ∈ R
d, ‖�‖ = 1}. (2)

I(z,�) has physical units of radiant power per unit of d-dimensional “area” per
d-dimensional “solid angle.” Table 1 gives explicit definitions of x, �, and other
properties introduced further on for d = 1, 2, 3.

Denoting the extinction coefficient (expressed in m−1) by σ , I(z,�) is a
function of exactly d variables that verifies the linear transport equation[

	z
d
dz

+ σ

]
I(z,�) = S(z,�) + q(z,�), (3)

where S(z,�) is the (unknown) source function for multiple scattering and
q(x,�) is the (specified) source term. These quantities have the physical units
of [I] further divided by a unit of length, hence radiant power per unit of d-
dimensional “volume,” instead of “area.” Specifically, we have

S(z,�) = σs

∫
�d

p(�′ · �)I(z,�′)d�′, (4)

where p(�′ · �) is the phase function (PF) in units of inverse d-dimensional
solid angle, which we assume is only a function of the scattering angle θs =
cos−1 �′ · �. As an important example, we have listed in Table 1 values for the
PF when scattering is isotropic. The quantity σs, appearing in (4), is the scatter-
ing coefficient in m−1. Combining (3) and (4) leads to the RTE in d dimensions
in standard integro-differential form.
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478 A. B. Davis and F. Xu

A popular approach for modeling RT in stochastic media is to use “homog-
enized” optical properties σ , σs, and p(�′ · �). This means that rather than
simple averages over the d-dimensional spatial variability of actual optical
properties, an effective value is taken that somehow captures the average im-
pact of the spatial fluctuations on I(z,�), itself a spatial average radiance
field. The effective optical properties will depend on a subset of their respec-
tive means, variances, possibly higher-order moments, auto-correlations, cross-
correlations, and so on.

Apart from previously mentioned physics-based homogenization tech-
niques in RT for the cloudy atmosphere (Davis et al., 1990; Cahalan,
1994; Cairns et al., 2000), rigorous mathematical methods have been
brought to bear on this still challenging problem (see, e.g., Allaire, 1992;
Dumas and Golse, 2000; Bal and Jing, 2010). However, these studies focus on
highly oscillatory optical media. Such high-frequency (“noisy”) stochastic me-
dia were independently investigated by Davis and Mineev-Weinstein (2011)
that are predicated on power-law (scaling) statistics. They used averaging
methods akin to those described further on (in §3.1), but with the necessary
modifications to account for noise-like spatial variability. Specifically, these
authors assumed media where the extinction coefficient fluctuations have a
wavenumber spectrum

Eσ (k) ∼ k−β, (5)

over a broad range of scales (i.e., 1/k) that overlaps with radiatively relevant
ones, including H and the mean free path (defined rigorously further on for
variable media). They found that in cases of white- or blue-noise media (β ≤ 0),
homogenization will likely work, being enabled by approximately exponential
mean transmission laws. Otherwise, that is, in cases of pink- or red-noise me-
dia (0 < β ≤ 1), it will not work since exponential decay is a poor approxima-
tion to the mean transmission law. Media with β > 1 are not noise-like—they
have a stochastic continuity property—and are discussed in §3.1.

In the present study, we are exclusively interested in the response of uni-
form or stochastic media to irradiation from an external source. If this source is
collimated (highly concentrated into a single direction �0, with 	0z > 0), then
we can take

q(z,�) = F0 exp(−σ z/μ0)σs p(�0 · �) (6)

in the uniform case, where F0 (in W/md−1) is its uniform areal density. We also
introduce here

μ0 = cos θ0 = 	z0.

Note that we have oriented the z-axis positively in the direction of the incom-
ing flow of solar radiation, as is customary in atmospheric optics. The meaning
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A Generalized Linear Transport Model 479

of each factor in (6) is clear: the incoming flux F0 at z = 0 is attenuated ex-
ponentially (Beer’s law) along the oblique path to level z where it is scattered
with probability σs per unit of path length and, more specifically, into direc-
tion � according to the PF value for θs = cos−1 �0 · �. In this case, I(z,�) is the
diffuse radiation (i.e., scattered once or more).

The appropriate boundary conditions (BCs) for the diffuse radiance that
obeys (3)–(6) will express that none is coming in from the top of the medium,
I(0,�) = 0 for 	z > 0. At the lower (z = H) boundary, we will take

I(H,�) = F−(H)/cd, (7)

where

F−(H) = ρ F+(H), (8)

for all 	z < 0, where ρ is the albedo of the partially (0 < ρ < 1) or totally (ρ = 1)
reflective surface; we have also introduced the downwelling (subscript “+”) and
upwelling (subscript “−”) hemispherical fluxes

F+(z) =
∫

	z>0
	zI(z,�)d� + μ0 F0e−σ z/μ0 ,

F−(z) =
∫

	z<0
|	z|I(z,�)d�.

(9)

This surface reflectivity model is, for simplicity, Lambertian (isotropically re-
flective), and the numerical constant cd = ∫

	z>0 	zd� is given in Table 1 for
d = 1, 2, 3. Naturally, we will also consider a black (purely absorbing) surface
in (7) by setting ρ = 0.

Alternatively, we can view I(z,�) as total (uncollided and once or more
scattered) radiance, and assume q(z,�) ≡ 0 inside Md(H). Radiation sources
will then be represented in the expression of boundary conditions (BCs). The
upper (z = 0) BC expresses either diffuse or collimated incoming radiation. In
the former case, we have

I(0,�) = F0/cd, (10)

for any � with 	z > 0. In the latter case, we have

I(0,�) = F0δ(� − �0), (11)

for 	z > 0. To reconcile (6) with the above BC, we notice that

I0(z,�) = F0 exp(−σ z/μ0)δ(� − �0) (12)

is the solution of the ODE in (3) when the r.-h. side vanishes identically (no
internal sources, nor scattering), and we use (11) as the initial condition. This
uncollided radiance becomes the source of diffuse radiation immediately after
scattering, hence its role in (6).
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480 A. B. Davis and F. Xu

In (12), s = z/μ0 is simply the oblique path covered by the radiation in
the medium from its source at z = s = 0 to the location where it is detected,
or scattered, or absorbed, or even escapes the medium (s ≥ H/μ0). From the
well-known properties of the exponential probability distribution, this makes
the mean free path (MFP)  between emission, scattering, or absorption events
equal to the the e-folding distance 1/σ .

Quantities of particular interest in many applications, including atmo-
spheric remote sensing, are radiances at the boundaries that describe out-
going radiation: I(0,�) with 	z ≤ 0; I(H,�) with 	z ≥ 0. Normalized (outgo-
ing, hemispherical) boundary fluxes,

R = F−(0)
μ0 F0

, (13)

T = F+(H)
μ0 F0

, (14)

are also of interest, particularly, in radiation energy budget computations. In
(13)–(14), the denominator is in fact F+(0) from (9). Therefore, for the diffuse
illumination pattern in (10), we only need to divide by F0.

Finally, a convenient nondimensional representation of outgoing radi-
ances, at least at the upper boundary, uses the “bidirectional reflection factor”
(BRF) form:

IBRF(�) = cdI(0,�)
μ0 F0

, (15)

for μ < 0. This is the “effective” albedo ρ of the medium, that is, as defined in
(7)–(8), but with z = 0 rather than z = H, knowing I(0,�) and hence F+(0) =
μ0 F0. Unlike the optical property ρ in (8) and the radiative response R in (13),
IBRF(�) is not restricted by energy conservation to the interval [0, 1].

Actually, in the familiar d = 3 dimensions, all of the above is known as
“1D” RT theory since only the spatial dimensions with any form of variability
count. If σ , σs and p(·) depend on z, it is still 1D RT. One can even remove from
further consideration the former quantity by adopting the standard change of
variables, z �→ τ = ∫ z

0 σ (z′)dz′. In this case, z �→ τ = σ z (depth in units of MFP
 = 1/σ ), then (3) and (4) become[

μ
d
dτ

+ 1
]

I(τ,�) = ω

∫
�d

p(�′ · �)I(τ,�′)d�′ + q(τ,�), (16)

where μ denotes 	z (= cos θ if d > 1) and ω = σs/σ is the single scattering
albedo (SSA). We have assumed that ω and p(·) are independent of z, hence
of τ , for simplicity as well as consistency with the notion of a homogenized
optical medium.
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A Generalized Linear Transport Model 481

Another important nondimensional property is the total optical thickness
of the medium M3(H), namely, τ � = σ H = H/. BCs for (16) are expressed as
in (7)–(11) but at τ = 0, τ �.

Finally, we adopt the Henyey–Greenstein (H–G) PF model pg(μs) ex-
pressed in the penultimate row of Table 1. Its sole parameter is the asymmetry
factor g = ∫

�d
�′ · �p(�′ · �)d�. The whole 1D RT problem is then determined

entirely by the choice of four quantities, {ω, g; τ �; ρ}, plus μ0 if d > 1.

2.2. Integral Forms of the d-Dimensional RTE
Henceforth, we take q(τ,�) ≡ 0 in (3) and, consequently, I(τ,�) is total

(uncollided and scattered) radiation and the upper BC is (11). We will also
assume in the remainder that ρ = 0 in the lower BC, cf. (7) and (8), which then
becomes simply I(τ �,�) = 0 for μ < 0. These assumptions are not essential
to our goal of generalizing RT theory to account for spatial heterogeneity with
long-range correlations, but they do simplify many of the following expressions
that are key to the discussion.

Now suppose that we somehow know S(τ,�) in (3), with q(τ,�) ≡ 0. It is
then straightforward to compute I(τ,�) everywhere. We simply use upwind
integration or “sweep”:

I(τ,�) =

⎧⎪⎪⎨
⎪⎪⎩

∫ τ

0
S(τ ′,�)e−(τ−τ ′)/μ dτ ′

μ
+ I(0,�)e−τ/μ, if μ > 0,∫ τ �

τ

S(τ ′,�)e−(τ ′−τ )/|μ| dτ ′

|μ| + I(τ �,�)e−(τ �−τ )/|μ|, otherwise,

(17)

where the boundary contributions are specified by the BCs. When these BCs
express an incoming collimated beam at τ = 0, cf. (11), and an absorbing sur-
face at τ = τ �, cf. (7) and (8) with ρ = 0, this simplifies to

I(τ,�) =

⎧⎪⎪⎨
⎪⎪⎩

∫ τ

0
S(τ ′,�)e−(τ−τ ′)/μ dτ ′

μ
+ I0(τ,�), if μ > 0,∫ τ �

τ

S(τ ′,�)e−(τ ′−τ )/|μ| dτ ′

|μ| , otherwise,

(18)

where I0(τ,�) is uncollided radiance from (12) with z = τ/σ .
With this formal solution of the integro-differential RTE in hand, we can

substitute the definition of S(τ,�) in terms of I(τ,�) expressed in (4), and
obtain an integral form of the RTE:

I(τ,�) =
∫

�d

∫ τ �

0
K(τ,�; τ ′,�′)I(τ ′,�′)dτ ′d�′ + QI(τ,�), (19)

where

QI(τ,�) = exp(−τ/μ0)δ(� − �0). (20)
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482 A. B. Davis and F. Xu

This is simply the uncollided radiance field I0(τ,�) from (18) and (12) where,
without loss of generality, we henceforth take F0 = 1. The kernel of the integral
RTE is given by

K(τ,�; τ ′,�′) = ωpg(� · �′)�
(

τ − τ ′

μ

)
exp(−|τ − τ ′|/|μ|)

|μ| , (21)

where �(x) is the Heaviside step function (= 1 if x ≥ 0, = 0 otherwise). It en-
forces the causal requirement of doing upwind sweeps.

Conversely, one can substitute (18) into (4), with the adopted change of
spatial coordinate (z �→ τ ) leading to σs �→ ω. That yields the so-called ancillary
integral RTE:

S(τ,�) =
∫

�d

∫ τ �

0
K(τ,�; τ ′,�′)S(τ ′,�′)dτ ′d�′ + QS(τ,�), (22)

where

QS(τ,�) = ωpg(� · �0) exp(−τ/μ0). (23)

The kernel is the same as given in (21). However, if there were spatial varia-
tions in the optical properties, SSA ω and/or PF p(·), then the kernels would
differ in that (20) would use the starting point and (22) the end point of the
transition (see, e.g., Davis and Knyazikhin, 2005).

If (19) is written in operator language as I = KI + QI , then it is easy to
verify that the Neumann series is a constructive approach for the solution:
I = ∑∞

n=0 In, where In+1 = KIn, hence

I =
∞∑

n=0

KnQI = (E − K)−1 QI, (24)

where E is the identity operator. This applies equally to the estimation of S as
a solution of (22). Once S(τ,�) is a known quantity, one can obtain the readily
observable quantity I(τ,�) using (18).

2.2.1. Comment on angular reciprocity
Note that K(τ,�; τ ′,�′) in (21) is invariant when we replace (τ,�; τ ′,�′)

with (τ ′,−�′; τ,−�), that is, swap positions in the medium and switch the
direction of propagation. This leads to reciprocity of the radiance fields for
plane-parallel slab media under the exchange of sources and detectors (Chan-
drasekhar, 1960). In our case, we consider radiance escaping the medium in
reflection (τ = 0) or transmission (τ = τ �) since the source is external. Focus-
ing on reflected radiance in BRF form (15), reciprocity reads as

IBRF(0,�; �0) = IBRF(0,−�0; −�), (25)
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A Generalized Linear Transport Model 483

where the second angular argument reads as a parameter (from upper BC)
rather than an independent variable. Similarly, we have IBRF(τ �,�; �0) =
IBRF(τ �,−�0; −�) in transmittance, using the same BRF-type normalization.

We can verify transmissive reciprocity explicitly on I0 = QI in (20) for
uncollided radiance. Reflective reciprocity can be verified less trivially using
singly-scattered radiance I1 = KI0 = KQI . Based on (20) and (21), this leads to

I1(0,�; �0) = ωpg(� · �0)
∫ τ �

0
exp(−τ ′/μ0) exp(−τ ′/|μ|)dτ ′/|μ|. (26)

From there, (15) yields

cd

μ0
I1(0,�; �0) = cd

ωpg(� · �0)
μ0 + |μ|

(
1 − exp

[
−τ �

(
1
μ0

+ 1
|μ|

)])
, (27)

with μ0 > 0 and μ < 0. Noting that −μ > 0 and −μ0 < 0, (27) verifies (25). The
same can be shown for transmitted radiance.

3. GENERALIZED RADIATIVE TRANSPORT IN d SPATIAL DIMENSIONS

3.1. Emergence of Nonexponential Transmission Laws
in the Cloudy Atmosphere

3.1.1. Two-point correlations in clouds according to in situ probes
We refer to Davis and Marshak (2004) and Davis (2006) for a detailed ac-

count of the optical variability we expect—and indeed observe (Davis et al.
1999, and references therein)—in the Earth’s turbulent cloudy atmosphere.
See also Kostinski (2001) for an interestingly different approach.

The important—almost defining—characteristic of this variability is that it
prevails over a broad range of scales, which translates statistically into auto-
correlation properties with long “memories.” The traditional metric for two-
point correlations in turbulent media is the qth-order structure function (Monin
and Yaglom, 1975)

SFq(r) = | f (x + r) − f (x)|q, (28)

where f (x) is a spatial variable of interest, r is a spatial increment of mag-
nitude r, and the overscore denotes spatial or ensemble averaging. Struc-
ture functions are the appropriate quantities to use for fields that are non-
stationary but have stationary increments.1 Stationarity of the increments in

1Following many others, we borrow here the terminology of time-series analysis since
the proper language of statistical “homogeneity” might be confused with structural ho-
mogeneity, a usage we have already introduced.
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484 A. B. Davis and F. Xu

f (x) means that the ensemble average on the right-hand side of (28) depends
only on r. Further assuming statistical isotropy, for simplicity, it will depend
only on r. The norm of wavelet coefficients have become popular alternatives
to the absolute increment in f (x) used in (28) (Farge, 1992; Muzy, Bacry, and
Arneodo, 1994).

As expected for all turbulent phenomena, in situ observations in clouds
invariably show that (Davis et al., 1994, 1996, 1999; Marshak et al., 1997)

| f (x + r) − f (x)|q ∼ rζq , (29)

for r ranging from meters to kilometers, where ζq is generally a “multiscaling”
or “multifractal” property, meaning that ζq/q is not a constant. Physically, this
means that knowledge of one statistical moment, such as variance SF2(r), of
the absolute increments cannot be used to predict all others based on dimen-
sional analysis. Otherwise, it is deemed “monoscaling” or “monofractal.”

It has long been known theoretically—and well-verified empirically—that
ζ2 = 2/3 when f is a component of the wind (Kolmogorov, 1941), temperature
or a passive scalar density (Obukhov, 1949; Corrsin, 1951), when the turbu-
lence is statistically homogeneous and isotropic. This is equivalent (Monin and
Yaglom, 1975) to stating that energy spectra of these various quantities in tur-
bulence are power-law with an exponent β = −5/3 in (5). It can also be shown
theoretically that ζq is necessarily a convex function, a prediction that has also
been amply verified empirically, although in practice the convexity is relatively
weak.

At scales smaller than meters, cloud liquid water content (LWC) under-
goes, according to reliable in situ measurements in marine stratocumulus, an
interesting transition toward higher levels of variability than expected from
the scaling in (29) (Davis et al., 1999). Specifically, sharp quasi-discontinuities
associated with positively skewed deviations occur at random points/times in
the transect through the LWC field sampled by airborne instruments. These
jumps are believed to be a manifestation of the random entrainment of non-
cloudy air into the cloud (Gerber et al., 2001).

At sufficiently large scales, | f (x + r) − f (x)|q ceases to increase with r as
f (x) becomes independent (decorrelates) from itself at very large distances. For
non-negative properties, such as the extinction coefficient or particle density,
this decoupling has to happen at least at the scale r where the absolute in-
crements (fluctuations) become commensurate in magnitude with the positive
mean of the property. This rationalizes the upper limit of the scaling range for
cloud LWC or droplet density at the scale of several kilometers. In the cloudy
atmosphere, decorrelation can happen sooner in the vertical than in the hor-
izontal in cases of strong stratification, that is, stratus and strato-cumulus
scenarios versus broken cumulus generated by vigorous convection.
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A Generalized Linear Transport Model 485

In atmospheric RT applications to be discussed next, the outer limit of r
only needs to be on the order of whatever scale it takes to reach significant op-
tical distances. That can be less than cloud thickness in stratus/stratocumulus
cases, or can stretch to the whole troposphere (cloudy part of the atmosphere)
when convection makes the dynamics more 3D than 2D.

3.1.2. Statistical ramifications for cloud optical properties
Our present goal is to quantify the impact of unresolved random spatial

fluctuations of σ (x) on macroscopic transport properties such as large-scale
boundary fluxes or remotely observable radiances, spatially averaged in the
instrument’s field-of-view. In view of the importance of sweep operations in d-
dimensional RT, we also need to understand the statistics of integrals of σ (x)
over a range of distances s in an arbitrary direction �. This is the optical path
along a straight line between points x and x + s�:

τ (x, x + s�) =
∫ s

0
σ (x + s�)ds. (30)

Better still, we need to characterize statistically the direct transmission factor
exp[−τ (x, x + s�)] that is used systematically in the upwind sweep operation.
Assuming stationarity and isotropy, we define

T (s) = exp[−τ (x, x + s�)] = exp[−σavr(x,�; s)s], (31)

where σavr(x,�; s) is the average extinction encountered by radiation propa-
gating uncollided between x and x + s�:

σavr(x,�; s) = 1
s

∫ s

0
σ (x + s′�)ds′ (32)

This is essentially a coarse version of the random field σ (x), smoothed over a
given scale s. What behavior do we expect it to have?

Being at the core a material density (times a collision cross-section), in-
crements of σ (x) will follow (29) when s is varied, but the segment-mean
σavr(x,�; s) will not depend much on the scale s. Indeed, comparing values of
σavr(x,�; s) for different values of s is really just saying, with linear transects,
that the notion of a material density can be defined. That simple proposition
is usually stated as a volumetric statement: the amount of material in a vol-
ume sd is proportional to that volume, and the proportionality factor is called
“density.”

Even more fundamentally, s-independence of (32), at least in the s → 0
limit, is tantamount to saying that σ (x) = σavr(x,�; 0) is indeed a “function,”

2This limit is to be understood physically as to the scale where noise-like fluctuations
occur, which is at least the inter-particle distance in a cloud but could be larger (Davis
et al., 1999; Gerber et al., 2001).
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486 A. B. Davis and F. Xu

that is, the symbol “σ (x)” represents a number. This is a natural consequence
of increments that vanish at least on average with s, a property known as
“stochastic continuity,” which incidentally does not exclude a countable num-
ber of discontinuities (e.g., sharp cloud edges in the atmosphere). All of these
ramifications come with the previously-mentioned long-range correlations de-
scribed by (29) for finite positive values of ζq.

A counter-example of such intuitive s-independent behavior for averages
is the spatial equivalent of white noise. Indeed, if σ (x) on the right-hand side
of (32) could somehow represent white noise (in the discrete world, just a se-
quence of uncorrelated random numbers), then the left-hand side is just an
estimate of its mean value based on as many samples as there are between 0
and s. As s → ∞, this estimate is known to converge to the mean (law of large
numbers) in 1/

√
s and, moreover, the PDF of σavr(x,�; s) is a Gaussian with

variance ∝ s (central limit theorem). This is a reminder that one should not de-
note white (or other) noises as a function f (x) but rather as a distribution that
exists only under integrals: f (x)dx is better, f (x, dx) is the best. That remark
is key to Davis and Mineev-Weinstein’s (2011) generalization of RT to rapidly
fluctuating extinction fields, possibly with anticorrelations across scales.

3.1.3. Representation of spatial fluctuations with Gamma PDFs
Turbulent density fields are often found to have log-normal distributions

and cloud LWC is no exception. However, Gamma distributions can be used to
approximate log-normals in terms of skewness, and are much easier to manip-
ulate. Barker and colleagues (1996) showed that Gamma distributions with a
broad range of parameters can fit histograms of cloud optical depth reasonably
well. Now, letting x = (�x, z)T, cloud optical depth is simply σ (�x, z) averaged spa-
tially over z from 0 to the fixed cloud (layer) thickness H, then re-multiplied
by H, and histograms were cumulated over �x; in this case, many large cloudy
images where �x designates a 30-m LandSat pixel. Barker (1996) proceeded to
apply this empirical finding to evaluate unresolved variability effects using the
standard two-stream approximation for scattering media, as defined further
on, in (43), for a representative case. We have used it previously for uncollided
radiation (Davis, 2006), and do the same here.

In summary, assume that the random number σavr(x,�; s) in (31) and (32)
is indeed statistically independent of s, at least over a range of values that mat-
ter for RT. This range of s should encompass small, medium, and large prop-
agation distances between emission, scattering, absorption, or escape events.
These events can unfold in the whole medium, or else in portions of it we might
wish to think of in isolation, for example, clouds in the atmosphere. If σ is the
spatially averaged extinction coefficient, over some or all of the transport space
(x,�), then we require the range of statistical independence on s to go from
vanishingly small to several times 1/σ . Were the medium homogeneous, this
last quantity would be the particle’s MFP, but is in general an underestimate
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A Generalized Linear Transport Model 487

of the true MFP (Davis and Marshak, 2004), as illustrated further on in the
specific case of interest here.

Following Barker and colleagues (1996), we now assume that the variabil-
ity of σavr(x,�; s), for fixed s, can be approximated with an ensemble of Gamma-
distributed values:

Pr{σ, dσ } = (a/σ )a

�(a)
σ a−1 exp(−aσ/σ ) dσ, (33)

where σ is the mean and a is the variability parameter

a = 1

σ 2/σ 2 − 1
,

an important quantity that varies from 0+ to ∞ since σ 2 ≥ σ 2 (Schwartz’s in-
equality). If σavr(x,�; s) is �-distributed for fixed s, then so is their product
τ (x, x + s�) in (30).

Equation (31) then reads as the Laplace characteristic function of this
Gamma PDF supported by the positive real axis:

Ta(s) =
∫ ∞

0
exp(−σs) Pr{σ, dσ } = 1

(1 + σs/a)a . (34)

In the limit a → ∞, variance σ 2 − σ 2 vanishes as the PDF in (33) becomes de-
generate, that is, δ(σ − σ ). We then retrieve Beer’s law: T∞(s) = exp(−σs). For
an explicit model-based derivation of (34) where the exponent a is expressed in
terms of the statistical parameters, see Davis and Mineev-Weinstein’s (2011)
study of scale-invariant media in the “red-noise” limit (β → 1) where the cor-
relations are at their longest.

The direct transmission law in (34) with a power-law tail thus generalizes
the standard law of exponential decay for the cumulative probability of radia-
tion to reach a distance s (or mean optical distance τ (s)) from a source without
suffering a collision in the material. Figure 1 illustrates both the positively
skewed PDFs for σ , at fixed s, in (33) and the generalized transmission laws
in (34) for selected values of a that we will use further on in numerical exper-
iments. In the middle panel, we can see that direct transmission probability
at τ = 1 increases from 1/e = 0.368 · · · to almost 1/2 going from a = ∞ (Beer’s
exponential law) to a power-law with a = 1.2. The rightmost panel shows that
there is still appreciable probability of direct transmission when a < ∞ at large
optical distances where radiation is all but extinguished in the standard a = ∞
case.

Now, viewing s as a random variable that is crucial to transport theory, we
have

Ta(s) = Pr{step > s} =
∫ ∞

s
pa(s)ds. (35)
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A Generalized Linear Transport Model 489

The PDF for a random step of length s is therefore

pa(s) =
∣∣∣∣dTa

ds

∣∣∣∣ (s) = − dTa

ds
(s) = σ

(1 + σs/a)a+1 . (36)

In the case of particle transport, we know that the MFP for the a = ∞ case
(uniform optical media) is ∞ = 1/σ . What is it for finite a (variable optical
media)? One finds

a = 〈s〉a =
∫ ∞

0
s dTa(s) =

∫ ∞

0
s pa(s)ds = a

a − 1
∞,

which is larger than ∞ and indeed diverges as a → 1+. Generally speaking,
the step moment 〈sq〉a is convergent only as long as −1 < q < a. This immedi-
ately opens interesting questions (addressed in depth in Davis and Marshak,
1997, and briefly discussed further on) about the diffusion limit of this vari-
ability model when a ≤ 2, that is, when the second-order moment of the step
distribution is divergent.

Figure 2 demonstrates how RT unfolds in d = 2 inside boundless conser-
vatively scattering media where σ is unitary. The media are either uniform or
stochastic but spatially correlated in such a way the ensemble average trans-
mission law is of the power-law form in (34). We consider media with expo-
nential transmission (a = ∞, uniform case) and power-law transmission laws

Figure 2: Six traces of random walks in d = 2 dimensions with 100 isotropic scatterings and
step sequences that follow power-law cumulative probabilities (34) and PDFs (36). Both
scatterings and steps use the same sequences of uniform random variables. Values of a are
∞ (exponential law), 10, 5, 2, 1.5, and 1.2. The two last ones are asymptotically self-similar
Lévy-stable flights (steps with divergent variance), the three former are asymptotically
self-similar Gaussian walks (steps with finite variance), and for a = 2 it is a transition case
(steps with log-divergent variance). The inset is a ×3 zoom into the commun origin of the 6
traces. More discussion in main text.
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490 A. B. Davis and F. Xu

with a = 10, 5, 2, 1.5, and 1.2. Scattering is assumed to isotropic and we follow
the random walk of a transported particle for 100 scatterings. For illustration,
the same scattering angles are used in each of the six instances. For the ex-
ponential case, the random free paths are generated using the standard rule:
s = − log ξ/σ , where ξ ia a uniform random variable on the interval (0,1). For
the power-law cases, we use

s = a × (ξ−1/a − 1)/σ . (37)

As for the random scattering angles, we use the same sequence of 100 values
of 2π × ξ .

In the inset of Figure 2, we see that all the traces start at the same point
in the same direction. Physically, we can imagine an electron bound to a crys-
tal surface hoping between holes associated with random defects (Luedtke and
Landman, 1999). Certain heterogeneous predator-prey and scavenging prob-
lems can also lead to 2D transport processes with a mix of small and large
jumps (Buldyrev et al., 2001). We can immediately appreciate how the MFP
increases as a → 1. At the same time, the increasing frequency of large jumps
enables the cumulative traces to end further and further from their common
origin as a decreases from ∞ to nearly unity.

One can read Figure 2 with atmospheric optics in mind, albeit with each
isotropic scattering representing ≈(1 − g)−1 forward scatterings (Davis, 2006).
Recalling that g is in the range 0.75 to 0.85 in various types of clouds and
aerosols, this translates to 4 to 7 scatterings before directional memory is lost.
For all values of a there is a wide distribution of lengths of jumps between
scatterings. However, for large values of a, the distance covered by a cluster of
small steps can equally well be covered with one larger jump. This behavior is
characteristic of solar radiation trapped in a single opaque cloud. In contrast,
for the smallest values of a, it is increasingly unlikely that a cluster of smaller
steps can rival in scale a single large jump. This behavior is typical of solar
radiation that is alternatively trapped in clouds and bouncing between them.
In other words, we are looking at a 2D version of a typical trace of a multiply
scattered beam of sunlight in a 3D field of broken clouds.

3.2. d-Dimensional Generalized RTE in Integral Form
Our goal is now to formulate the transport equations that describe RT in

media when, as in Figure 2, we transition from an exponential direct trans-
mission law to a power-law counterpart.

Our starting point is the integral form of the d-dimensional plane-parallel
RTE in (19); alternatively, (22) paired with (18). These formulations are suf-
ficiently general to describe RT and other linear transport processes. It gets
specific to the standard form of RT theory only when we look at the make up
of the kernel K in (21), the source terms QI in (20) and QS in (23).

D
ow

nl
oa

de
d 

by
 [

A
nt

ho
ny

 D
av

is
] 

at
 1

9:
26

 0
2 

Ja
nu

ar
y 

20
15

 



A Generalized Linear Transport Model 491

Therein, we find exponential functions that describe the propagation part
of the transport. Specifically, we identify

T∞(τ ) = exp(−τ ) (38)

in QI , assuming μ0 = 1 for the present discussion. The subscript ∞ notation is
consistent with our usage in (34) with σ = 1, which is implicit in a nondimen-
sionalized 1D RT. This is Beer’s classic law of direct transmission, the hallmark
of homogeneous optical media where τ (s) = σs with, in the present setting,
σ ≡ σ (i.e., a degenerate probability distribution for σ ).

In QI , T∞(τ ) is therefore at work as the cumulative probability in (35). In
the kernel K, as well as in QS, we again find exponential functions, but here
we interpret them as a PDF:∣∣∣∣dT∞

dτ

∣∣∣∣ = −T∞(|τ − τ ′|) = exp(−|τ − τ ′|), (39)

again assuming μ = 1 for the present discussion. The fact that the (38) and
(39) are identical functions is of course a defining property of the exponential.

What makes us assign the “cumulative probability” interpretation of
exp(−τ ) to its use in QI , and the “PDF” interpretation of exp(−|τ − τ ′|) to its
use in QS and K? The clue is the foundational transport physics. In QI = I0,
the uncollided radiation is simply detected at optical distance τ . It could have
gone deeper into the medium before suffering a scattering, an absorption, a
reflection, or escaping through the lower boundary. In K however, it is used to
obtain In from In−1, as previously demonstrated for n = 1, cf. (26). In this case,
the radiation must be stopped between τ and τ + δτ . It is a probability den-
sity that is invariably associated with the differential dτ . Similarly in QS, the
transport process is to stop the the propagation in a given layer and, moreover,
it is specifically by a scattering event.

In order to account for unresolved random-but-correlated spatial variabil-
ity of extinction σ (x), we propose for the integral forms of the d-dimensional
plane-parallel RTE the following generalization: use

K(τ,�; τ ′,�′) = ωpg(� · �′)�
(

τ − τ ′

μ

) |Ṫa(|τ − τ ′|/|μ|)|
|μ| , (40)

rather than (21), with

QS(τ,�) = ωpg(� · �0)|Ṫa(τ/μ0)| (41)

for (22), and

QI(τ,�) = Ta(τ/μ0)δ(� − �0) (42)

for (19), where a can have any strictly positive value, including ∞. We use the
overdot notation in (40) and (41) to denote the derivative of a function of a
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492 A. B. Davis and F. Xu

single variable, which is the case here when σ is combined with s to form τ in
(34) and (36), and a is viewed as a fixed parameter.

3.3. Are There Integro-Differential Counterparts of Generalized
Integral RTEs?
In short, the d-dimensional stochastic transport model we propose is sim-

ply to replace T∞(τ ) in (38) with Ta(τ ) for finite a, which we equate with Ta(s) in
(34) when σ = 1 (thus s = τ ). This logically requires the use of Ṫa(τ ) obtained
similarly from dTa(s)/ds in (36). We thus have a well-defined transport problem
using an integral formulation, to be solved analytically or numerically. Now, is
there an integro-differential counterpart?

We do not yet have an answer to this question. One path forward to address
it is to follow the steps of Larsen and Vasques (2011) who started with the clas-
sic RT/linear Boltzmann equation in integro-differential form and transformed
it into a “nonclassical” one by introducing a special kind of time-dependence
that is essentially reset to epoch 0 at every scattering. Nonexponential free
path distributions are thus accommodated, and a modified diffusion limit is
derived in cases where 〈s2〉 is greater than 2〈s〉2, its value for the exponen-
tial distribution, but not too much larger. Traine and coauthors (2010) have
also proposed a “generalized” RTE for large-scale transport through random
(porous) media; this model uses an empirical counterpart of our parametric
non-exponential transmission law in some parts of the computation, but re-
tains the standard integro-differential form for the final estimation of radiance
using the upwind sweep operator in (17).

Another path forward is to essentially define new differential (or more
likely pseudo-differential) operators as those from which the new integral op-
erator in (40) follows. This amounts to broadening the definition of the Green
function, G(τ,�; τ ′,�′) = Ta(|τ − τ ′|/|μ|)δ(� − �′), for 1D RT in the absence of
scattering, previously with a = ∞, now with arbitrary values, and assigning a
role to ∂G/∂τ . This more formal approach seems to us less promising in terms
of physical insights—a judgment that may be altered if a rigorous connection
to the concept of fractional derivatives (Miller and Ross, 1993) can be estab-
lished. These pseudo-differential operators have indeed found many fruitful
applications in statistical physics (Metzler and Klafter, 2000; West, Bologna,
and Grigolini, 2003).

Although out of scope for the present study, there is an implicit time-
dependence aspect to generalized (as well as standard) RT even if the radiance
fields are steady in time. The best way to see this is to return to the inset in
Figure 2. The highlighted region (between gray brackets) shows in essence how
standard and generalized 2D RT unfolds for solar illumination of a medium of
optical thickness ≈11 at an angle of ≈30◦ from zenith. The smaller the value

D
ow

nl
oa

de
d 

by
 [

A
nt

ho
ny

 D
av

is
] 

at
 1

9:
26

 0
2 

Ja
nu

ar
y 

20
15

 



A Generalized Linear Transport Model 493

of a, the shorter the path of the light inside the medium. The number of scat-
terings decreases from 25 (a = ∞) to 10 (a = 1.2). The flight time for sunlight
to cross the cloudy portion of the atmosphere—at most from near-ground level
to the troposphere (10 to 15 km altitude, depending on latitude)—cannot be
measured directly. However, it can be estimated statistically via oxygen spec-
troscopy (Pfeilsticker et al., 1998). Pfeilsticker (1999), Scholl and colleagues
(2006), and Min and Harrison (1999) as well as Min and colleagues (2001,
2004), have found that the more variable the atmosphere at a given mean op-
tical thickness, the shorter the top-to-ground paths on average. This finding
offers a degree of validation of generalized RT for applications to the Earth’s
cloudy atmosphere.

In the remainder of this study, we derive analytical and numerical solu-
tions of the generalized RTE in (19) with (42)–(40), and then apply them to
specific topics where standard and generalized RT differ significantly.

4. DETERMINISTIC NUMERICAL SOLUTION IN d = 1: THE MARKOV
CHAIN APPROACH

In 2, we stated that once we adopted the H–G PF in Table 1 the whole 1D
RT problem is determined entirely (in the absence of surface reflection) by
three numbers, {ω, g; τ �} for a given d = 1, 2, or 3, with the possible addition
of μ0 when d > 1. To this small parameter set, we now add the exponent a
of the power-law direct transmission function that distinguishes standard RT
(exponential limit, a → ∞) from its generalized counterpart (0 < a < ∞). The
complete parameter set is therefore {ω, g, a; τ �(; μ0)}.

4.1. Exact Solution of the Standard RTE in d = 1
The “d = 1” (literal 1D) version of 1D RT has in fact a vast literature of its

own since it is formally identical to the two-stream RT model (Schuster, 1905;
Kubelka and Munk, 1931), a classic approximation for (standard) RT in d = 3
space. This simplified RT model is still by far the most popular way to compute
radiation budgets in climate and atmospheric dynamics models (Meador and
Weaver, 1980). We note that there is no longer an angular integral to compute
in the d-dimensional RTE in (16). It is understood to be replaced everywhere
by a sum over two directions: “up” and “down.” Correspondingly, scattering
can only be through an angle of 0 or π rad: μs = ±1, respectively. The d = 1 RT
problem at hand thus takes the form of a pair of coupled ODEs:

(
± d

dτ
+ 1

)
I±(τ ) = ω

[
p+I±(τ ) + p−I∓(τ )

] + q±(τ ) (43)

D
ow

nl
oa

de
d 

by
 [

A
nt

ho
ny

 D
av

is
] 

at
 1

9:
26

 0
2 

Ja
nu

ar
y 

20
15

 



494 A. B. Davis and F. Xu

with p± = (1 ± g)/2 (cf. Table 1) and q±(τ ) = ωp± exp(−τ ). This system of cou-
pled ODEs is subject to BCs I+(0) = I−(τ �) = 0 when ρ = 0 (otherwise I−(τ �) =
ρ I+(τ �)).

Let us use

I±(τ ) = J(τ ) ± F(τ )
2

(44)

to recast the diffuse radiance field in the above 2-stream model, where

J(τ ) = I+(τ ) + I−(τ ), (45)

F(τ ) = I+(τ ) − I−(τ ), (46)

are respectively the scalar and vector fluxes.
By summing the two ODEs in (43), we find an expression of radiant energy

conservation:

dF/dτ = −(1 − ω)J + ω exp(−τ ). (47)

Differencing (43) yields

F(τ ) = (−dJ/dτ + ωge−τ )/(1 − ωg). (48)

The first term on the right-hand side (and the only one that survives after the
second one has decayed at large τ ) is a nondimensional version of Fick’s law, a
reminder that diffusion theory is exact in d = 1. Using (48) in (47) leads to a
1D screened Poisson equation for J(τ ):[

− d2

dτ 2 + (1 − ω)(1 − ωg)
]

J(τ ) = ω
[
1 + (1 − ω)g

]
exp(−τ ),

subject to BCs, J(0) + F(0) = J(τ �) − F(τ �) = 0 when ρ = 0 (black surface).
Factoring in (48), these are always of the third (Robin) type.

When ω = 1 (no absorption), the solution of the above pair of ODEs and
BCs is

J(τ ) = 1 + R(τ �) ×
(

1 − τ

τ �/2

)
− exp(−τ ), (49)

F(τ ) = T (τ �) − exp(−τ ). (50)

We have used here boundary-escaping radiances

R(τ �) = I−(0) = 1 − T (τ �), (51)

T (τ �) = I+(τ �) + exp(−τ �) = 1
1 + (1 − g)τ �/2

, (52)

in the above representation of the solution. When ω < 1, somewhat more
complex expressions result in the form of second-order rational functions of
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A Generalized Linear Transport Model 495

exp(−kτ ), where k = 1/
√

(1 − ω)(1 − ωg), with polynomial coefficients depen-
dent on ω, g, and exp(−τ ). All these classic results will be used momentarily to
verify the new Markov chain numerical scheme.

4.2. Markov Chain (MarCh) Scheme
We now adapt our “Markov Chain” (MarCh) formulation of standard RT in

d = 3 dimensions (Xu, Davis, West, and Esposito, 2011; Xu, Davis, West, Mar-
tonchik, and Diner, 2011; Xu et al., 2012) to the present d = 1 setting for gen-
eralized RT. MarCh is an underexploited alternative to the usual methods of
solving the plane-parallel RT problem first proposed by Esposito (1979) and Es-
posito and House (1978). It differs strongly from many of the usual approaches:
discrete ordinates, spherical harmonics, adding/doubling, matrix-operator, and
kindred techniques. It has more in common with source iteration (successive
orders of scattering, or Gauss-Seidel iteration), and even with Monte Carlo
(MC). In short, we can say that MarCh is an efficient deterministic solution of
a discretized version of the integral RTE solved by MC. We illustrate in d = 1
for simplicity, but also for previously articulated reasons, that there may be
an acute need for generalized RT in the two-stream approximation in climate
and, generally speaking, atmospheric dynamical modeling.

The generalized ancillary integral RTE is expressed in generic form in (22)
with the kernel in (40) and the source term in (41). In d = 1, it yields a system
of two coupled integral equations for the two possible directions in S±(τ ):

S±(τ ) = ω

[
p±

∫ τ

0
S+(τ ′)

∣∣Ṫa(τ − τ ′)
∣∣ dτ ′ + p∓

∫ τ �

τ

S−(τ ′)
∣∣Ṫa(τ ′ − τ )

∣∣ dτ ′
]

+ QS±(τ ), (53)

where

QS±(τ ) = ωp±
∣∣Ṫa(τ )

∣∣ . (54)

We recognize here the operator form of the integral equation, S = KS + QS,
which can be solved by Neumann series expansion, similarly to (24):

S = QS + KQS + K2 QS + · · · = (E − K)−1 QS. (55)

As detailed in the Appendix, the pair of simultaneous integral RTEs in
(53), given (54), are finely discretized in τ (200 layers with �τ = 0.05, hence
τ � = 10), with careful attention to accuracy in the evaluation of the integrals
using finite summations. The resulting matrix problem is large but tractable.
It can be solved using either a truncated series expansion of matrix multiplies
or the full matrix inversion depending on problem parameters (primarily, τ �)
and the desired accuracy.
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496 A. B. Davis and F. Xu

As usual when working with the ancillary integral RTE, we finish comput-
ing radiance detected inside the medium using the formal solution, as in (18)
but in d = 1 format, and with the appropriate generalized transmission law:⎧⎪⎪⎨

⎪⎪⎩
I+(τ ) =

∫ τ

0
S+(τ ′) Ta(τ − τ ′) dτ ′ + Ta(τ ),

I−(τ ) =
∫ τ �

τ

S−(τ ′) Ta(τ ′ − τ ) dτ ′,
(56)

with q−. Indeed, “detection” implies that the radiation reaches a level, but
could have gone further. A special case of detection is radiation escaping the
medium at a boundary: I+(τ �) or I−(0), which can also be obtained from known
values of S± using one or another of the expressions in (56). At any rate, it
is the “cumulative probability” version of the transmission law that is needed
here. In short, after implementing (55), the final step of the numerical compu-
tation is to derive radiances I±(τ ) everywhere (it is required) from the known
source function S±(τ ) using a discretized version of (56).

In the Appendix, the discrete-space version of the above problem is derived
directly from an analogy with random walk theory using Markov chain for-
malism: present state, state transition probabilities, probability of stagnation,
of absorption (including escape), starting position/direction of walkers, and so
on. Although intimately related to all these concepts, which are used exten-
sively in MC modeling, the new model is deterministic since it uses normal
rather than random quadrature rules. We naturally call it the Markov Chain
(MarCh) approach to RT. In a recent series of papers (Xu, Davis, West, and
Esposito, 2011; Xu, Davis, West, Martonchik, and Diner, 2011; Xu et al., 2012),
we have brought it to bear on aerosol remote sensing on Earth (in d = 3), so
far only with a = ∞, but including polarization.

4.3. Illustration with Internal Fields
To demonstrate our MarCh code for generalized transport in d = 1, we fo-

cus on uniform or stochastic media with τ � = 10 irradiated by a unitary source
at its upper (τ = 0) boundary, here, to the left of each panel in Figure 3. We
first assume conservative (ω = 1) and isotropic (g = 0) scattering. The outcome
is plotted in the top two panels in the d = 1 equivalent of a decomposition in
Fourier modes (in d = 2) or spherical harmonic modes (in d = 3). Specifically,
we have scalar flux J = I+ + I− in the left column and (negative) vector flux
−F = I− − I+ in the right column. In the middle row, g is raised from 0 to 0.8.
In the bottom row, ω is then lowered from unity to 0.98. In all of these scenar-
ios, a was varied, the selected values being 1/2, 1, 3/2, 2, 10, and ∞; the latter
choice is designated as “Beer’s law” and the others as “power laws” in Figure 3.

When ω = 1, radiant energy conservation requires that total net flux
F(τ ) + Ta(τ ) be constant across the medium, and equal to T (1, g, a; τ �). This

D
ow

nl
oa

de
d 

by
 [

A
nt

ho
ny

 D
av

is
] 

at
 1

9:
26

 0
2 

Ja
nu

ar
y 

20
15

 



A Generalized Linear Transport Model 497

Figure 3: Internal radiance fields J = I+ + I− (right) and −F = −I+ + I− (left) computed using
the new MarCh scheme for d = 1 described in the Appendix. J(τ ) in (45) and −F(τ ) in (46)
are plotted as a function of optical depth τ into a medium with τ � = 10, the unitary source
being at τ = 0, for selected values of a. The standard exponential law obtained when
a → ∞ is designated as “Beer’s law.” In the top two rows, no absorption is included but the
phase function is varied: p+ = 1/2 (g = 0) on top; p+ = 0.9 (g = 0.8) in the middle. In the
bottom row, again g = 0.8 but ω is reduced from unity to 0.98.
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498 A. B. Davis and F. Xu

Table 2: Boundary Fluxes R, Tdif, Tdir = Ta(τ �), and Absorbtance A for the d = 1
Stochastic Medium with τ � = 10 used in Figure 3

ω g a R Tdif Tdir T A

1.00 0.0 ∞ 0.833 0.167 0.000 0.167 0.000
1.00 0.0 10. 0.814 0.185 0.001 0.186 0.000
1.00 0.0 2.0 0.727 0.245 0.028 0.273 0.000
1.00 0.0 1.5 0.693 0.260 0.047 0.307 0.000
1.00 0.0 1.0 0.632 0.277 0.091 0.368 0.000
1.00 0.0 0.5 0.500 0.282 0.218 0.500 0.000
1.00 0.8 ∞ 0.500 0.500 0.000 0.500 0.000
1.00 0.8 10. 0.475 0.524 0.001 0.525 0.000
1.00 0.8 2.0 0.378 0.594 0.028 0.622 0.000
1.00 0.8 1.5 0.345 0.608 0.047 0.655 0.000
1.00 0.8 1.0 0.290 0.619 0.091 0.710 0.000
1.00 0.8 0.5 0.192 0.590 0.218 0.808 0.000
0.98 0.8 ∞ 0.422 0.401 0.000 0.401 0.176
0.98 0.8 10. 0.406 0.432 0.001 0.433 0.161
0.98 0.8 2.0 0.335 0.524 0.028 0.552 0.112
0.98 0.8 1.5 0.309 0.546 0.047 0.593 0.098
0.98 0.8 1.0 0.264 0.568 0.091 0.659 0.077
0.98 0.8 0.5 0.179 0.557 0.218 0.775 0.046

was verified numerically for all values of a and both values of g. In the right-
hand panels, we see that indeed −F(τ ) = −T (1, g, a; τ �) + Ta(τ ); see (50) and
(52) for the case of a = ∞ and ω = 1.

For reference, Table 2 gives R, Tdif, Ta(τ �), and absorbtance A = 1 − (R +
T ) = 1 − R − Tdif − Ta(τ �) for our three choices of {ω, g} and all values of a. All
the entries in Table 2 were verified to all the expressed digits using a custom
MC code for generalized transport in d = 1. Apart from the fact that there
is no oblique illumination, nor is there a distinction between collimated and
diffuse illumination, the key difference between a MC for d = 1 and d > 1 is
how to select a scattering angle. In d > 1, it is a continuous random variable
but in d = 1 the forward versus backward scattering decision is made based on
a Bernoulli trial.

As another element of verification for the MarCh code, we recognize in the
upper and middle left-hand panels of Figure 3 the characteristic result for J(τ )
in the case of standard transport theory (a → ∞) in the absence of absorption
(ω = 1), namely, the linear decrease modulated by an exponential expressed in
(49).

In standard transport theory in d = 1, or using the 2-stream/diffusion ap-
proximation for higher dimensions, the linear decrease of J(τ ) when ω = 1 fol-
lows directly from the constancy of F(τ ), assuming they include both diffuse
and uncollided radiation; see (48) and (50), but without the exponential terms.
An interesting finding here is that, although F(τ ) + Ta(τ ) is constant for all
values of a, the linear decrease of J(τ ) + Ta(τ ) does not generalize from a = ∞
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A Generalized Linear Transport Model 499

to a < ∞. We conclude that generalized RT conserves energy, as it should, both
globally (A+ R + T = 1) and locally, as expressed in

dF/dτ = −(1 − ω)J(τ ) + ωṪa(τ ), (57)

which is follows directly from (43)–(46) when a = ∞. It is not obvious how to
derive (57) for the generalized transport model described by one or another of
its integral RTEs, even in d = 1. In contrast, Fick’s law in (48), which relates
F to dJ/dτ , can only be exact when a = ∞ and, moreover, when d = 1.

Another interesting numerical finding is that when ω = 1 and a = ∞, T
depends only on the scaled optical thickness (1 − g)τ �, as is readily seen in (52).
This means that by similarity an isotropically scattering medium (g = 0) with
τ � = 10 has the same total transmittance T as a forward scattering medium
with (say) g = 0.8 and τ � = 50. Formally, T (1, g,∞; τ �) is only a function of
(1 − g)τ �. More generally, allowing ω ≤ 1, we have

F(ω, g,∞; τ �) ≡ fF

(
1 − ω

1 − ωg
, (1 − ωg)τ �

)
(58)

for F = A, R, T , where the first argument on the r.-h. side is known as the
similarity parameter (King, 1987). This is not the case when a < ∞.

5. DIFFUSION STUDY IN d = 2: THEORY AND MONTE CARLO
SIMULATION

5.1. Theoretical Predictions
In this section, we focus on d = 2 spatial dimensions, partly for sim-

plicity (fidelity with Figure 2, where nothing is happening outside of the
depicted (x, z)T-plane), partly because there are previously mentioned two-
dimensional transport processes on real substrates (including random ones
where a stochastic model is in order). We focus specifically on nonabsorbing
media (ω = 1) over an absorbing lower boundary (ρ = 0). Moreover, we will as-
sume an isotropic source at the upper boundary, that is, BC in (10) with F0 =
1.

We will investigate transmitted fluxes, both direct and diffuse, their total
T (g, a; τ �) being defined in (10), but ignoring μ0. We start with a review of the
standard a = ∞ case.

The exact expression for T (g,∞; τ �) is given in (52) for d = 1 where the dif-
fusion ODE model is mathematically exact. In d > 1, diffusion is only a phys-
ically reasonable approximation to plane-parallel RT for very opaque highly
scattering media. In lieu of (44), it is based on the first-order truncation

I(τ,�) ≈ J(τ ) + d × Fz(τ )μ
�d

, (59)
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500 A. B. Davis and F. Xu

and, in lieu of the first entry in the next-to-last row of Table 1, we take

pg(μs) ≈ 1 + d × gμs

�d
. (60)

This leads to Laplace/Helmholtz or Poisson ODEs for J(τ ), respectively for
boundary and volume expressions for the sources. In plane-parallel slab geom-
etry, the BCs are again Robin-type. When homogeneous (hence sources in the
volume), they are conventionally expressed as[

J − χd

(1 − ωg)
dJ
dτ

]
τ=0

= 0,

[
J + χd

(1 − ωg)
dJ
dτ

]
τ=τ �

= 0,

where χd is the extrapolation length, that is, boundary values of J/|dJ/dz|,
expressed in transport MFPs, that is,

t = 1/(1 − ωg)σ. (61)

Classic values for χd are listed in Table 1 (last row). In the absence of absorp-
tion and using boundary sources, total transmission is

T (g,∞; τ �) ≈ 1
1 + τ �

t /2χd
, (62)

where τ �
t = (1 − g)τ � = H/t is the scaled optical thickness. This expression is

identical to (52) for d = 1 (χ1 = 1), but here we use χ2 = π/4.
Diffusion theory for a < ∞ cases is in a far worse state since we do not

know yet how to formulate generalized RT in integro-differential form. What
is known is the asymptotic scaling of T (g, a; τ �) with respect to τ �

t . Based on
the appropriate truncation of the Sparre-Anderson law of first returns (1953),
Davis and Marshak (1997) showed that

T (g, a; τ �) ∝ τ �
t

−α/2
, (63)

where α = min{2, a} is the Lévy index. Recall that a is the generally noninteger
value of the lowest order moment of 〈sq〉 that is divergent for the power-law
step distribution in (34). Then one of two outcomes occurs:

• If a ≥ 2, hence α = 2, then the position of the random walk in Figure 2 is
Gaussian (central limit theorem), and standard diffusion theory applies.
As can be seen from (62), the scaling exponent in (63) is indeed (negative)
α/2 = 1.

• If a < 2, hence α = a, then the position of the random walk in Figure 2 is
Lévy-stable (generalized central limit theorems), and the diffusion process
is “anomalous.”

The predicted scaling in (63) will occur for any spatial dimensionality.
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A Generalized Linear Transport Model 501

5.2. Numerical Results
Extensive numerical computations were performed in d = 2 spatial dimen-

sions using a straightforward Monte Carlo scheme. The goal was to estimate
T (g, a; τ �) for a wide range of τ (0.125 to 4096), two choices for g (0 and 0.85),
and a representative selection of values for a: 1.2, 1.5, 2, 5, 10, and ∞. We used
(37) to sample the distance to the next collision.

The key idiosyncrasies of Monte Carlo simulation of RT in d = 2 are for the
two procedures for generating random angles:

• At the departure point of the trajectory, an isotropic source in the angular
half-space (|θ | < π/2) uses sin θ0 = 1 − 2ξ (where ξ is a uniform random

variable on [0,1]) and cos θ0 =
√

1 − sin2
θ0.

• If g �= 0, directional correlation is implemented by computing θn+1 = θn + θs

where θs = 2 tan−1 [
tan[(ξ − 1/2)π ] × (1 − g)/(1 + g)

]
based on the corre-

sponding H–G PF from Table 1 for d = 2.

The remaining operations (boundary-crossing detection and tallies) are
similar in d = 1,2,3.

Figure 4 shows our results for T (g, a; τ �) as a function of scaled optical
thickness τ �

t = (1 − g)τ � in a log-log plot. We notice the similarity of T (0,∞; τ �)
and T (0.85,∞; τ �) using the scaled optical thickness, as predicted in (62):
T (g,∞; τ �) ∼ T ((1 − g)τ �) when (1 − g)τ � � 1. Specifically, the two transmis-
sion curves overlap when plotted against (1 − g)τ �, at least for large values. In
contrast, we see clear numerical evidence that generalized RT does not have
such asymptotic similarity in T (g, a; τ �), as was previously anticipated when
examining internal radiation fields in d = 1. More precisely, the scaling expo-
nent in (63) is, as indicated, independent of g but the prefactor (and approach
to the asymptote) is. In Figure 4, we have estimated the exponents numerically,
and they are close to the predicted value, min{1, a/2}.

In summary, our modest diffusion theoretical result in (63) for generalized
RT is well verified numerically, and we have gained some guidance about what
to expect for a more comprehensive theory.

6. SINGLE SCATTERING IN d = 3: VIOLATION OF ANGULAR
RECIPROCITY

We first revisit the closed-form expression we derived in standard RT for
the single scattering approximation in (27) for radiances escaping the upper
boundary. We remarked that they have the reciprocity property that reversing
�0 (source) and � (detector) in both sign and in order gives the same answer.
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502 A. B. Davis and F. Xu

Figure 4: 2D Monte Carlo evaluations of T (g, a; τ �) versus transport (or “scaled”) optical
thickness τ �

t in log-log axes for g = 0 (solid black) 0.85 (dotted gray) and for a = 1.2, 1.5, 2, 5,
10, and ∞ (from top down). Asymptotic scaling exponents are estimated numerically using
the last two values of τ � and compared with theoretical predictions in the main text.

Here, we need to evaluate

I1(0,�; �0) = ωpg(� · �0)
∫ τ �

0
Ta(τ ′/μ0) |Ṫa(τ ′/|μ|)| dτ ′/|μ|. (64)

From there, (15) yields for the BRF form

π
μ0

I1(0,�; �0) = πωpg(� · �0) × a
μ0

(
μ0
|μ|

)a (
1 − μ0

|μ|
)−2a

×
[
B

(
2a, 1 − a; 1 − μ0

|μ|
)

− B
(
2a, 1 − a; a 1−μ0/|μ|

a+τ �/|μ|
)]

,
(65)
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504 A. B. Davis and F. Xu

with −1 ≤ μ < 0 and 0 < μ0 ≤ 0), and where we use the incomplete Euler Beta
function: B(x, y; z) = ∫ z

0 tx−1(1 − t)y−1dt.
To demonstrate that this complex expression violates the reciprocity re-

lation in (25) and by how much, we have plotted in Figure 5 the ratio of
I1(0,−�0; −�)/|μ| to I1(0,�; �0)/μ0 for a small value of τ � compatible with the
single scattering approximation used in (64). This ratio is independent of the
SSA, ω, and of azimuthal angle, φ (assuming φ0 = 0), in d = 3 since it appears

only in the evaluation of the PF via �0 · � = μ0μ +
√

1 − μ2
0

√
1 − μ2 cos φ. As

expected, the violation is stronger for smaller values of a (a = 1.2 and a = 10
are displayed).

This violation of reciprocity is a desirable attribute of stochastic RT model-
ing at least in atmospheric applications. It is indeed consistent with real-world
satellite observations of reciprocity violation uncovered by DiGirolamo and col-
leagues (1998) in spatially variable cloud scenes inside a relatively broad field
of view, and readily replicated with numerical Monte Carlo simulations. These
findings were soon explained theoretically by Leroy (2001). This provides an
element of validation of the new model and, by the same token, invalidates for
atmospheric applications all models for RT in stochastic media based on either
homogenization or linear mixing.

It is important to realize that this reciprocity violation is related (i) to the
uniform illumination of the scene and (ii) to the spatial averaging that is in-
herent in the observations that the new model is designed to predict. Indeed,
at the scale of a collimated source at a single point in space and a collimated
receiver aimed at another direction at another point in any medium, spatially
variable or not, there is a fundamental principle of reciprocity as long as the
PF has it, p(�′ → �) = p(−� → −�′), and Helmholtz’s reciprocity principles
will guaranty that property under most circumstances. Starting from there,
Case (1957) showed that invariance under arbitrary horizontal translation is
also required to extend this (internal) “Green’s function” reciprocity to Chan-
drasekhar’s (1950) (external) reciprocity relations for plane-parallel slabs.

7. CONCLUSIONS AND OUTLOOK

We have surveyed a still small but growing literature on radiative transfer
(equivalently, mono-group linear transport) theory where there is no require-
ment for the direct transmission law—hence the propagation kernel—to be
exponential in optical distance. In particular, we gather the evidence from the
atmospheric radiation and turbulence/cloud literatures that a better choice of
transmission law on average would have a power-law tail, at least for solar
radiative transfer in large domains with a strong but unresolved variability of
clouds and aerosols that is shaped by turbulent dynamics. Long-range spatial
correlations in the fluctuations of the extinction coefficient in the stochastic
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medium are essential to the emergence of power-law transmission laws, and
such correlations are indeed omnipresent in turbulent media such as cloudy
airmasses as well as entire cloud fields.

From there, we modified the integral form of the radiative transfer equa-
tion to accomodate such power-law kernels. This leads to a generalized linear
transport theory parameterized by the power-law exponent. This new model
reverts to the standard one where exponential transmission prevails in the
limit where the characteristic power-law exponent increases without bound.
In the new theory however, the physics dictate that there are two specific roles
for the transmission function, which lead to different but related expressions.
There is no such formal distinction in standard transport theory. However,
when the origins of the exponentials are carefully scrutinized from a transport
physics perspective, their different functionalities become apparent.

The new transport theory, possibly with some restrictions, is likely to be
one instance of the new “nonclassical” class of transport models investigated
recently by Larsen and Vasques (2011). These authors were primarily moti-
vated by fundamental questions about neutron multiplication processes in peb-
blebed nuclear reactors. We do not anticipate long-range spatial correlations in
these reactors so the relevant transmission laws are more likely to be modified
exponentials such as found by Davis and Mineev-Weinstein (2011) in media
with very high-frequency fluctuations.

We presented a unified formulation for standard and generalized transport
theory in d = 1, 2, 3 spatial dimensions and their associated direction spaces.
The present study first adds to previous ones the capability of a new determin-
istic computational scheme for solving the generalized linear transport equa-
tion, which does not have at present an integro-differential form, only an in-
tegral one. We thus address the stochastic transport problem at hand, so far
only in d = 1, using a Markov chain formalism. It is used to explore internal
intensity and flux fields where numerical results shed light on questions of
similarity and diffusion. Diffusion theory and the space-angle similarity cap-
tured in the scaled or “transport” mean-free-path are exact in d = 1 for stan-
dard transport—not so in generalized transport. In d > 1, diffusion is only an
approximation applicable to opaque scattering media, and the associated sim-
ilarity is only asymptotic (large optical thickness regimes).

New numerical simulations presented here in d = 2 confirm and qualify
the violation of similarly. They also confirm previous predictions about the
asymptotic scaling of diffuse transmission, which is anomalous or “Lévy-like”
if the characteristic exponent is less than two. Lévy flights are now attracting
considerable interest in laboratory as well as atmospheric optics (Barthelemy,
Bertolotti, and Wiersma, 2008). Finally, the generalized transport problem is
solved in d = 3 in the single scattering approximation. This solution is used to
highlight the violation of angular reciprocity in generalized radiative transfer.
This is yet another distinction between standard transport theory, including
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homogenization-based models for transport in stochastic media, and the new
class of generalized transport models. This nonreciprocity is in fact observed
in the Earth’s cloudy atmosphere using reflected sunlight, and is therefore a
desirable attribute for stochastic transport of solar radiation.

A logical next step is to implement the Markov chain solution in d = 3.
Monte Carlo-based predictions of the angular patterns for radiance escaping
the medium on the upper (obliquely illuminated) boundary are already avail-
able for the verification process. In d = 3, there may be an interest in adding
light polarization capability and linearizing the model with respect to the new
spatial variability parameter a, the exponent that controls the power law tail
of the direct transmission law.

Finally, we draw attention to a serendipitous development in the atmo-
spheric radiation literature. While our ongoing theoretical and computational
work on unresolved/stochastic spatial variability of the extinction coefficient in
turbulent scattering media has lead to the parameterized class of power-law
propagation kernels described herein, Conley and Collins (2011) have indepen-
dently arrived at the very same power-law parameterization for the problem of
unresolved spectral variability of the absorption coefficient due to all manner
of molecules in the Earth’s atmosphere that might contribute to the thermal
and solar radiative processes that build up the greenhouse effect.

This opens tantalizing questions about novel unified formulations of the
challenging problem of radiation transport in clumpy 3D scattering media that
are permeated with spatially uniform but spectrally variable absorbing gases.
A first step in that direction is to assume that the scattering elements of the
optical medium are in fact spatially uniform. However, our generalized radia-
tion transport model for multiple scattering based on power-law transmission
between scatterings/absorptions still applies, and it can be invoked to capture
the impact of purely spectral variability on the overall radiation transport from
sources to sinks/detectors.
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nanocluster. Phys. Rev. Lett. 82:3835–3838.

Marchuk, G. I., Mikhailov, G., Nazaraliev, M., Darbinjan, R., Kargin, B., Elepov, B.
(1980). The Monte Carlo Methods in Atmospheric Optics. New York: Springer Ver-
lag.

Marshak, A., Davis, A., Wiscombe, W. J., Cahalan, R. F. (1997). Scale-invariance in
liquid water distributions in marine stratocumulus, Part II, Multifractal properties
and intermittency issues. J. Atmos. Sci. 54:1423–1444.

Meador, W. E., Weaver, W. R. (1980). Two-stream approximations to radiative transfer
in planetary atmospheres: A unified description of existing methods and a new
improvement. J. Atmos. Sci. 37:630–643.

Metzler, R., Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A frac-
tional dynamics approach. Physics Reports 339:1–77.

Miller, K. S., Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional
Differential Equations. New York: Wiley-Interscience.

Min, Q.-L., Harrison, L. C. (1999). Joint statistics of photon path length and cloud opti-
cal depth. Geophys. Res. Lett. 26:1425–1428.

Min, Q.-L., Harrison, L. C., Clothiaux, E. E. (2001). Joint statistics of photon
path length and cloud optical depth: Case studies. J. Geophys. Res. D106:7375–
7385.

Min, Q.-L., Harrison, L. C., Kiedron, P., Berndt, J., Joseph, E. (2004). A high-
resolution oxygen A-band and water vapor band spectrometer. J. Geophys. Res.
D109:2202–2210.

Monin, A. S., Yaglom, A. M. (1975). Statistical Fluid Mechanics (Vol. 2). Boston: MIT
Press.
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Muzy, J.-F., Bacry, E., Arnéodo, A. (1994). The multifractal formalism revisited with
wavelets. International Journal of Bifurcation and Chaos 4:245–302.

Obukhov, A. M. (1949). Temperature field structure in a turbulent flow. Izv. Acad. Nauk
SSSR Ser. Geog. Geofiz 13:58–69.

Pfeilsticker, K. (1999). First geometrical path lengths probability density function
derivation of the skylight from spectroscopically highly resolving oxygen A-band
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APPENDIX A: MARKOV CHAIN FORMALISM FOR GENERALIZED
RADIATIVE TRANSFER

For “literal” 1D RT (“d = 1” in the main text), the plane-parallel medium be-
comes a finite line segment [0,τ ∗] and each layer is bounded by two adjacent
“nodes” on such a line. Accordingly, the phase function describes light scatter-
ing in only two possible directions: forward (with probability p+) and backward
(with probability p– = 1–p+). These probabilities are conveniently parameter-
ized in Table 1 as p± = (1±g)/2 where g is the mean cosine of the scattering
angle θ s, which is either +1 (θ s = 0) or –1 (θ s = π ). Thus, g = (+1)×p++(–1)×p–

is between –1 and +1, and g = 0 (isotropic scattering) leads to p+ = p– = 1/2.
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To construct a computational Markov chain model, we discretize the
medium into N “layers” (subsegments) so that each one has an optical thick-
ness �τn = τn − τn−1 (1 ≤ n ≤ N) with τ 0 = 0 and τN = τ ∗. Moreover, we set
the positive τ -axis downward (or rightward, as in Figure 3); that way, the solar
source is at the upper (or left, as in Figure 3) boundary at τ = τ 0 = 0.

Markov chain formalism, applied to computational RT in particular, de-
scribes a spatio-directional distribution of “particles” executing random walks
with no memory beyond the present state. It has two key ingredients: (i) the
initial distribution across all possible “states” (position on grid and direction of
propagation), and (ii) the transition matrix, which describes the probability of
a particle to jump from any given state to any other.

A.1. Initial Light Distribution
The initial amount of light in the nth layer moving in direction i = 0 (down-

ward) or i = 1 (upward) is created by a single scattering of the solar light that
directly propagates from the upper boundary to the layer without suffering
a collision. Assuming a uniform source of diffuse light in the layer, the first
scattering redistributes (according to Bernoulli trial probabilities p±) the solar
light stopped in the layer through scattering.

Adopting conventional notation from Markov chain theory, we thus have
the following fluxes in each direction (i = 0,1) per unit of optical distance:

�0,(n,i) = −F0ωp(�θi0)
1

�τn

∫ τn

τn−1

Ṫa(τ )dτ = −F0ωp(�θi0)
Ta(τn) − Ta(τn−1)

�τn
,

(A.1)

where F0 is the incident flux at τ = 0 (which we can assume is unity without
loss of generality), ω is the single scattering albedo, p(�θ i0) is the phase func-
tion, with �θ i0 denoting the scattering angle formed between the incidence
angle θ0 = 0 and the internal source angle θ i: �θ i0 = |θi − θ0|. For downward
propagation (i = 0), θ i = 0 and �θ i0 = 0 resulting in p(�θ i0) = p+, while for
upward propagation (i = 1), θ i = π and �θ i0 = π resulting in p(�θ i0) = p–.
Lastly, Ta(τ ) denotes here the generalized transmission law in Equation (34)
of the main text, assuming unitary mean extinction (σ̄ = 1), while –Ṫa(τ ) > 0
is the absolute value of its derivative, denoted

∣∣Ṫa(τ )
∣∣ in the main text. Recall

that Ta(τ ) = –Ṫa(τ ) = exp(–τ ) when a = ∞.

A.2. Transition Matrix
The transition matrix Q (continuing to follow conventional notation from

Markov chain theory) describes a particle’s change from state (n,i), meaning in
layer n and going in direction i, into another state (n′,j). Imagine light traveling
from the nth to n′th layer, extinguished in the n′th layer in its original direction
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i, and is then scattered into the new direction j. Each element Q(n′,j),(n,i) of Q
quantifies the probability of such a change:

Q(n′, j),(n.i) =

⎧⎪⎨
⎪⎩

− 1
�τn

∫ τn

τn−1

∫ τn′
τn′−1

Ṫa(τ − x)ωp(�θ ji)dxdτ , n > n′

(1 − Pesc)ωp(�θ ji), n = n′

− 1
�τn

∫ τn

τn−1

∫ τn′
τn′−1

Ṫa(x − τ )ωp(�θ ji)dxdτ , n < n′
, (A.2)

where �θ ji = ∣∣θ j − θi
∣∣ is the scattering angle and the average escaping proba-

bility of a particle leaving nth layer is

Pesc = 1
�τn

∫ �τn

0
Ta(τ )dτ . (A.3)

Note in (A.2) the finite probability in the discrete world of the particle remain-
ing in the same layer. Equation (A.2) is evaluated analytically. For n > n′:

Q(n′, j),(n.i) = −ωp(�θ ji)
1

�τn

∫ τn

τn−1

∫ τn′

τn′−1

Ṫa(τ − x)dxdτ

= −ωp(�θ ji)
1

�τn

∫ τn

τn−1

[
Ta(τ − τn′−1) − Ta(τ − τn′ )

]
dτ

= −ωp(�θ ji)
1

�τn

{ [
F(τn, τn′−1) − F(τn−1, τn′−1)

]
− [

F(τn, τn′ ) − F(τn−1, τn′ )
] }

, (A.4)

where

F(τ, x) =
∫

Ta(τ − x)dτ =
{

ln(τ − x + 1), a = 1
− a

a−1

[
τ−x

a + 1
]−(a−1)

, a �= 1
(A.5)

including –exp[–(τ–x)] when a = ∞. For n < n′:

Q(n′, j),(n.i) = −ωp(�θ ji)
1

�τn

∫ τn

τn−1

∫ τn′

τn′−1

Ṫa(x − τ )dxdτ

= −ωp(�θ ji)
1

�τn

{ [
F(τn′−1, τn) − F(τn′−1, τn−1)

]
− [

F(τn′ , τn) − F(τn′ , τn−1)
] }

. (A.6)

Finally, for n = n′:

Q(n′, j),(n.i) = ωp(�θ ji)(1 − Pesc) = ωp(�θ ji)
1

�τn

{
�τn − [

F(�τn, 0) − F(0, 0)
]}

,

(A.7)

where F(0, 0) = 0 for a = 1, and −a/(a−1) for a �= 1 (–1 when a = ∞).
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A.3. Markov Chain Model
With the initial light distribution vector �0 and transition matrix Q, mul-

tiple light scattering processes in the spatially correlated stochastic medium
with a general (exponential or not) transmission law or propagation kernel
can be expressed in the form of a matrix series, namely,

�tot = �0 + Q�0 + QQ�0 + ... = (E − Q)−1�0, (A.8)

where E is the identity matrix, and �0, Q�0, QQ�0, . . . represent the contri-
butions from first, second, third, and higher orders of scattering, respectively.

The total diffusely reflected (Rdif) and transmitted (Tdif) light are con-
tributed by different layers, namely,

F0 Rdif = Itop
dif,up =

N∑
n=1

�tot,(n,1)T̄a(n, 0)�τn, (A.9)

F0Tdif = Ibot
dif,dn =

N∑
n=1

�tot,(n,0)T̄a(n, τ ∗)�τn, (A.10)

at the top and bottom of medium, respectively. For consistency with the as-
sumption of uniform source distribution in every layer, an average transmis-
sion is used for the particles leaving the nth layer for a given location x in the
medium, namely,

T̄a(n, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
�τn

∫ τn

τn−1

Ta(τ − x)dτ , x ≤ τn−1

1
�τn

∫ τn

τn−1

Ta(x − τ )dτ , x ≥ τn.

(A.11)

Invoking Equation (A.5), the expressions become

T̄a(n, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
�τn

[
F(τn, x) − F(τn−1, x)

]
, x ≤ τn−1

− 1
�τn

[
F(x, τn) − F(x, τn−1)

]
, x ≥ τn.

(A.12)

Finally, to compute the diffuse intensity field at the top and bottom of the
nth layer, (A.9) and (A.10) should be generalized to

I(n)
dif,up =

N∑
k=n

�tot,(k,1)T̄a(k, τn−1)�τn, (A.13)

I(n)
dif,dn =

n∑
k=1

�tot,(k,0)T̄a(k, τn)�τn. (A.14)
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514 A. B. Davis and F. Xu

Sums J and differences F of these quantities, as defined from (45) and (46), are
plotted in Figure 3 for a variety of parameters {ω,g,a} when τ ∗ = 10.

A.4. Energy Conservation
We have the following energy conservation when ω = 1 (no absorption),

after including the directly transmitted light Ta(τ ∗):

Rdif + T = Rdif + [Tdif + Ta(τ ∗)] = 1. (A.15)

This identity was used as a first verification test for the Markov chain code.
Other tests are described in §4.3 of the main text.

A.5. Relation to Quantities and Methods Used in Main Text
The way the formulation of the literal 1D RT problem is derived from the

first principles of Markov chain theory is interesting because we arrive imme-
diately at the Neumann series solution of a discrete version of the ancillary
integral form of the RTE for d = 1, namely, Equation (53) in the main text.

Indeed, the large-but-finite state vector �tot is nothing more than a dis-
crete version of the source function S±(τ ) as can be seen already by com-
paring (A.1) for its initial value �0 and the source term QS±(τ ) in Equation
(54), paying attention to definitions rather than to notations. Consequently,
the large system of coupled linear equations that is solved in (A.8), namely,
�tot = Q�tot + �0, is nothing more than a discrete version of the general-
ized ancillary integral RTE in Equation (53), solved formally in Equation (55).
The transition matrix Q is therefore just a discretized version of the kernel
KS(τ ’,±’;τ ,±) for that integral equation, written out explicitly in Equation (53).
Finally, boundary-leaving and internal radiances are obtained from the known
�tot with (A.9)–(A.10) and (A.13)–(A.14) respectively. These are simply the
discrete-space counterparts of the formal solution of the 1D RTE, as used in
generalized RT to compute I±(τ ) from S±(τ ), once it is a known quantity; its
expression for d = 1 can be seen in Equation (56).

Before closing, it is important to recall that the Monte Carlo method in
linear transport/RT theory is put on a solid mathematical footing using the
same Markov chain concepts as used here (Marchuk et al., 1980). Finally, we
recall that the key assumption in our generalized RT theory is to modify all
the spatial integral expressions without requiring that there be a differential
formulation from which they are normally derived.
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